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Programming in VLSI

From Communicating Processes

to Delay-Insensitive Circuits

1

Alain J. Martin

California Institute of Technology

Delays have dangerous ends.
—William Shakespeare

Introduction

With chip size reaching one million transistors, the complexity of VLSl algo-
rithms —i.e., algorithms implemented as digital VLSI circuits— is approach-
ing that of software algorithms— i.e., algorithms implemented as code for
a stored-program computer. Yet design methods for VLSI algorithms lag far
behind the potential of the technology.

Since a digital circuit is the implementation of a concurrent algorithm,
we propose a concurrent programming approach to digital VLSI design. The
circuit to be designed is first implemented as a concurrent program that ful-
fills the logical specification of the circuit. The program is then compiled
—manually or automatically— into a circuit by applying semantic-preserving
program transformations. Hence, the circuit obtained is correct by construc-
tion.

The main obstacle to such a method is finding an interface that provides a
good separation of the physical and algorithmic concerns. Among the phys-
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2 Chapter 1 Martin: Programming in VLSI

ical parameters of the implementation, timing is the most difficult to isolate
from the logical design, because the timing properties of a circuit are essen-
tial not only to its real-time behavior, but also to its logical correctness if the
usual synchronous techniques are used to implement sequencing.

For this reason, delay-insensitive techniques are particularly attractive for
VLSI synthesis. A circuit is delay-insensitive when its correct operation is
independent of any assumption on delays in operators and wires except that
the delays be finite [17]. Such circuits do not use a clock signal or knowledge
about delays. .

Let us clarify a matter of definitions right away: The class of entirely delay-
insensitive circuits is very limited. Different asynchronous techniques distin-
guish themselves in the choice of the compromises about delay-insensitivity.

Speed-independent techniques assume that delays in gates are arbitrary,
but that there are no delays in wires. Self-timed techniques assume that a
circuit can be decomposed into equipotential regions inside which wire de-
lays are negligible {16]. In our method, certain local “forks” are introduced to
distribute a variable as inputs of several operators. We assume that the differ-
ences in delays between the branches of the fork are shorter than the delays
in the operators to which the fork is an input. We call such forks isochronic
[6).

Although we initially chose delay-insensitive techniques for reasons of
methodology, those techniques present other important advantages in terms
of efficiency and robustness:

The clock rate of a synchronous design has to be slowed to account for
the worst-case clock skews in the circuit and for the slowest step in a
sequence of actions. Since delay-insensitive circuits do not use clocks,
they are potentially faster than their synchronous equivalents.

Since the logical correctness of the circuits is independent of the values
of the physical parameters, delay-insensitive circuits are very robust to
variations of these parameters caused by scaling or fabrication, or by
some nondeterministic behavior such as the metastability of arbiters.
For instance, all the chips we have designed have been found to be
functional in a range of voltage values (for the constant voltage level
encoding the high logical value} from above 10V to below 1V.

Delay-insensitive circuit design can be modular: A part of a circuit can
be replaced by a logically equivalent one and safely incorporated into
the design without changes of interfaces.

Because an operator of a delay-insensitive circuit is “fired” only when
its firing contributes to the next step of the computation, the power
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consumption of such a circuit can be much lower than that of its syn-
chronous equivalent.

Since the correctness of the circuits is independent of propagation de-
lays in wires and, thus, of the length of the wires, the layout of chips
is facilitated.

The method indeed produces correct and efficient circuits. It has been ap-
plied, with both “hand” compilation and automatic compilation, to a series
of difficult design problems such as distributed mutual exclusion, fair arbi-
tration, routing automata, stacks, and serial multipliers. All fabricated chips
have been found to be correct on “first silicon™. Although our CMOS imple-
mentation of the basic operators has been overly cautious, and the electrical
optimization techniques have been rather tame, the performance of the chips
has been found at least equal to that of synchronous implementations. We
have just completed the design of a general-purpose microprocessor, and its
performances are very encouraging: In 1.6um 5CMOS, it runs at 18 million
instructions per second. (See the conclusion, Section 23, for more detail.}

The main reason for the efficiency of the method is that, rather than going
in one step from program to circuit, the designer applies a series of transfor-
mations to the original program. At each stage, powerful algebraic manipula-
tions can be performed leading to important optimizations in terms of speed
or area.

In the first part of this chapter, we present the “source code” notation, the
“object code” notation, and a VLSI implementation of the production rules in
CMOS technology. The source notation is inspired by C. A. R. Hoare's CSP [4]: A
program is a set of concurrent processes communicating by input and output
commands on channels. (A similar experience in the use of communicating
processes for programming in VLS is described in [13].) The object code
notation, called production rule set, is one of the main innovations of the
method and is an interesting notation for digital VLSI all by itself.

In the second part, we describe the four main steps of the compilation
(process decomposition, handshaking expansion, production rule expansion,
operator reduction), illustrating them with a number of examples. In partic-
ular, we present the different algebraic transformations that can be applied
at different stages of the compilation and that give the method its flexibility
and efficiency.
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Part I: The Source Code and the Object Code

1 The Program Notation

For the sequential part of the notation, we use a subset of Edsger W. Dijk-
stra's guarded command language [3], witha slightly different syntax. We give
only an informal definition of the constructs’ semantics.

(i) b1 stands for b := true, b] stands for b := false. Those assignments are
called “simple assignments”.

(ii) The execution of the selection command [G; — 5.0 ...01Gn— Sa), where
G, through G, are boolean expressions, and 5, through 5, are program
parts (G;is calleda “guard”, and G; — S;a “guarded command”), amounts
to the execution of an arbitrary S; for which G, holds. If (G, v ...V G,)
holds, the execution of the command is suspended until {G; v...vGy,)
holds.

(iii) The execution of the repetition command *{G; — 51l ...0 Ga — Skl
where G, through G, are boolean expressions, and §; through 5, are
program parts, amounts to repeatedly selecting an arbitrary 5; for which
G, holds and executing S;. If 7(G1 v ... v G,) holds, the repetition termi-
nates.

(iv) Sequencing: Besides the usual sequential composition operator 'x;y’, we
introduce two other operators. For atomic actions x and y, 'x, ' stands
for the execution of x and y in any order leading to termination. For
noninterfering communication actions x and y, “x ¢ ¥ stands for the
simultaneous execution of x and y. (We shall return to this definition
when we discuss the implementation of communication in Section 19))

(v) [G), where G is a boolean expression, stands for {G — skip] and thus
for “wait until G holds". (Hence “[G]; §” and [G — §] are equivalent.)

(vi) =[S} stands for *[true — §] and thus for “repeat § forever”.

(vii) From (ii) and (iii}, the operational description of the statement
*[[Gy —=S5F...1G.,— all

is “repeat forever: wait until some G; holds; execute an §; for which G;
holds".

(viii) Tail recursion is allowed, but not general recursion. Functions and pro-
cedures with a simple parameter mechanism are also used, but we will
not discuss them here,
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1.1 Communicating Processes

A concurrent computation is described as a set of processes composed by
the usual concurrent composition operator {. The concurrent composition is
weakly fair; i.e., if, in a given state of the computation, x is the next atomic
action of one of the processes, then x will be executed after a possibly un-
bounded but finite number of atomic actions from other processes.

Processes communicate by communication actions on ports; they do not
share variables.! A port of a process is paired with a port of another process
to form a channel. When no messages are transmitted, communication on
a port is reduced to synchronization signals. The name of the port is then
sufficient to identify a communication action.

If two processes, pl and p2, share a channel with port X in p1 and port Y
in p2, at any time the number of completed X-actions in pl equals the num-
ber of completed Y-actions in p2. In other words, the completion of the nth
X-action “coincides” with the completion of the nth Y-action. If, for example,
p1 reaches the nth X-action before p2 reaches the nth Y-action, the comple-
tion of X is suspended until p2 reaches Y. The X-action is then said to be
pending. When, thereafter, p2 reaches Y, both X and Y are completed. The
predicate “X is pending” is denoted as qX. If, for an arbitrary command A, cA
denotes the number of completed A-actions, the semantics of a pair (X,Y) of
communication commands is expressed by the two axioms:

X =cY (Al)
X v qY (A2)
Surprisingly, it is possible (and even advantageous) to define communica-

tion actions as coincident and yet implement the actions in completely asyn-
chronous ways.

1.2 Probe

Instead of the usual selection mechanism by which a set of pending commu-
nication actions can be selected for execution, we provide a general boolean
command on ports, called the probe. The definition of the probe given in [5]
states that in process pl, the probe command X has the same value as qY.
For the time being, we use a weaker definition, namely:

X=qY
qY= oX,

1. We have made a restricted use of shared variables in the design of the microprocessor.
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where oP means P holds eventually. (We will return to the first definition in
the example on the implementation of a fair arbiter.)

1.3 Communication

Matching communication actions are also used to implement a form of dis-
tributed assignment statement, to “pass messages”, as it is often said. In that
case, the pair of commands is specified to consist of an input command and
an output command by adjoining them to the symbols “?” and “!”, respec-
tively. For example, X? is an input command and X is therefore an input port,
and Y! is and output command and Y is therefore and output port.

Axiom Communication axiom

Let X?u and Y!vbe matching, where u is a process variable and v is an expres-
sion of the same type as u. The communication implements the assignment
u = v. In other words, if v = V before the communication, then 4 = V and

v = V after the communication.

1.4 First Example: Port Selection

Process sel repeatedly performs communication action X or communication
action Y, whichever can be completed; sel is blocked if and only if neither X
nor Y can be completed:

sel=s[[X— X[Y—=Y].

Obviously, process sel is not fair because of the nondeterministic choice
of a guard when both guards are true. Negated probes make it possible to
transform sel into a fair version, fsel:

fsel = *[[X—X; [Y—Y[Y—skip]
f Y—-Y; [X—X[-X— skip]
1.

Negated probes are necessary for implementing fairness.

1.5 Second Example: Lazy Stack

We implement a stack S of size n, n > 0, as a string of n communicating
processes defined as follows:
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h, ifn=1,
(hI7), ifn>1,

S=

where h, the head of the stack, is a process, and T, the tail of the stack,
is a stack of size n— 1. Process h communicates with the environment of
the stack by the communication actions in?x and out!x, and with T by the
communication actions put!x and get?x. Hence, h.put matches T.in, and h.get
matches T.out. (We assume that no attempt is ever made to add a portion to
a full stack, or to remove a portion from an empty stack.)

Each stack element either is empty and behaves like program E, oris full
and behaves like program F. The epithet “lazy” is attributed to this stack be-
cause no reshuffling of portions takes place after a portion has been removed
from a full stack element.

E = [in—inx; F
[ out — get?x; outix; E

]

F = [out—out!x; E
i in— put!x; in?x; F
].

The following alternative coding of the stack element process, due to Peter
Hofstee, illustrates the advantages of the probe construct:

*{[in — in?x
0 out — getix
I
[out — out!x
in — put!x

1.

We assume that each stack element is initially empty.

2 The Object Code: Production Rules

Carrying the discrete model of computation down to the transistor level re-
quires that the MOS transistor be idealized as an on/off switch. Unfortunately,
the simple semantics of the switch ignore too many electrical phenomena
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that play an important role in the functioning of the circuit. A crucial inno-
vation of the method is that the transistor need not be viewed as a discrete
switch; voltages can change continuously from one stable level to the other
one, provided that the changes are monotonic.

The notation for the object code provides the weakest possible form of
control structure and the smallest possible number of program constructs.
In fact, it contains exactly one construct, the production rule (PR), and one
control structure, the production-rule set.

We consider the production-rule notation to be the canonical representa-
tion of a digital circuit. This representation can be decomposed into several
equivalent networks of digital operators, depending on the set of building
blocks used, but the production-rule set represents the circuit independently
of the chosen implementation.

Definition A PR is a construct of the form G — S, where 5 is either a
simple assignment oran unordered list“s1, 52, s3,..." of simple assignments,
and G is a boolean expression called the guard of the PR.

Example
xAy—2zl
w— ut, vl

The semantics of a PR are defined only if the PR is stable:

Definition A PR G+ S is said to be stable in a given computation, if, at
any point of the computation, G either is false or remains invariantly true
until the completion of §.

Stability is not guaranteed by the implementation. It has to be enforced by
the compilation procedure.

Definition An execution of the stable PR G — 5 is an unbounded se-
quence of firings. A firing of G — S with G true amounts to the execution of

S. A firing of G— S with G false amounts toa skip.

Definition A PR set is the concurrent composition of all PRs of the set.

2.1 Operations on PR Sets

The only composition operation on two PR sets is the set union.
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Theorem

The implementation of two concurrent processes is the set union of the two
PR sets implementing the processes and of the PR sets implementing the
channels between the processes, if any.

The proof follows from the associativity of the concurrent composition
operator.

The other operations on the PRs of a set are those allowed by the following
properties:

Multiple occurrences of the same PR are equivalent to one as a conse-
quence of the idempotence of the concurrent composition.

The two rules G = S1 and G — 52 are equivalent to the single rule
G +— S1,52.

The two rules G1 — S and G2 — S are equivalent to the singie rule
GlvG2—S.

2.2 Noninterference

We require that complementary PRs —i.e., PRs of the type Gl xtand G2 —
xi— be noninterfering.

Definition Two complementary PRs are noninterfering when =G1 v 262
holds invariantly.

It can be proven that, under the stability of each PR and noninterference
among complementary PRs, the concurrent execution of the PRs of a set is
equivalent to the following sequential execution:

x[select a PR with a true guard, fire the PR]

where the selection is weakly fair (each PR is selected infinitely often). From
now on, we ignore the firings of a PR with a false guard; a firing will mean a
firing of a PR with a true guard.

Until we return to these issues, we shall assume that the stability and
noninterference requirements are fulfilled.

3 VLSI Implementation of PRs

Stability and noninterference are the two properties that make the VLSI
implementation of PRs {(almost) straightforward. As an example, we describe
how PRs can be implemented in CMOS technology.
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3.1 The CMOS Transistors

A CMOS circuit is a network of “nodes” —variables— interconnected by tran-
sistors. Certain nodes are also connected to the input-output “pads”, which
provide the interface with the environment; we will ignore the pads in this
presentation. Other nodes are directly connected to the power node, provid-
ing the constant high-voltage value —called VDD— that represents the logical
constant true or 1. Yet other nodes are directly connected to the ground node
—called GND— providing the constant low-voltage value that represents the
logical constant false or 0.

A node takes the continuous range of voltage values between the high volt-
age and the low voltage. Above a certain voltage v1 the value is interpreted
as 1. Below another voltage v0, the value is interpreted as 0. Thanks to the
stability property, the precise values of vl and V0, which vary from node
to node, are irrelevant provided that vO < v1 and the voltage changes are
meonotonic. (Strict monotonicity is not necessary and is actually impossible
to achieve because of noise, but we will not enter into these details here.)

A CMOS transistor is of either n-type or p-type. A transistor relates three
nodes in the following way. Let g, standing for “gate”, and x and y be the
three nodes. When g is false for an n-transistor, and true for a p-transistor,
no current passes through the region between x and y, called the channel;?
thus x and y are left unchanged.

When g is set to true for an n-transistor, or false for a p-transistor, the
channel becomes conducting. In this case, either x and y have the same volt-
ages and are left unchanged, or a current is established in the channel until
x and y reach the same voltage. The common value reached by x and y de-
pends on electrical properties of x and y that are determined by the physical
sizes (capacitances) of the nodes implementing x and y and by their interac-
tions with the rest of the circuit. (Differences in node capacitances may cause
charges to flow through the channel of a transistor in a way that results in
unintended values of the nodes. This phenomenon, called charge sharing,
may make it quite difficult to predict the final voltage value reached by x and
y.)

In order to define the net effect of a PR independently of the physical pa-
rameters of its implementation, we are going to restrict the use of transistors.
(In particular, the restriction will eliminate most occurrences of charge shar-
ing.)

We impose the condition that a transistor used in isolation connect only
two variables of the circuit: the gate g and one of the other two nodes, say z.

2 This notion of channel is unrelated to the one we introduced for communication among
processes.
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The third node of the transistor is either the power or the ground. With this
restriction, the behavior of a single n-transistor is

gzl or g—zl.
The behavior of a single p-transistor is

“gw= 2zl or g—zl.

3.2 Threshold Voltages

The current in the channel of a transistor is a function of the so-called gate-
to-source voltage, V,,, defined as V{ g)-min{V(x), V(y)) for an n-transistor and
as V(g)—-max(V(x), V(y)} for a p-transistor. In first approximation, the current
is assumed to be zero when

Vgs <Vin
for an n-transistor and
Ves 2 Vip

for a p-transistor. V,, and V,, are called the threshold voltages. (Typically,
Vip = 1V and Vi, =—1V.}

Because of the existence of threshold voltages, if an n-transistor is used
to implement g — z 1, the final value of z is nota “strong™ 1, since the chan-
nel will stop conducting as soon as the voltage of z is within V,, of the gate
voltage. And symmetrically, a p-transistor used to implement g — z } does
not produce a “strong” zero as the final value of z. Since the voltage drops
caused by the threshold voltages accumulate as we compose operators, itis
important to produce strong signals in order to be able to compose an arbi-
trary number of operators. We shall therefore restrict our use of n-transistors
to PRs of the form

g—zl (1
and p-transistors to production rules of the form
ag ez, (2)

With these restrictions, all implementations produce strong signals.
Threshold voltages are difficult to adjust in CMOS technology. Actually,
they tend to become more variable as the feature size decreases. (They may
also vary during the activity of the circuit because of some electrical inter-
action with the substrate, called body effect.) For constant node capacitance,
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variations in thresholds account for most of the discrepancies in propagation
delays on a CMOS chip. In particular, these variations exclude the possibility
that the ordering in space of a set of variables along a common wire be used
to infer an ordering in time of a set of transitions of these variables.

3.3 Switching Circuits
Consider the canonical (stable) PR
b z|, 3)

where b is a boolean expression in terms of a set of variables. These vari-
ables are used as gates of transistors implementing a switching circuit s cor-
responding to b: s is a series-parallel switching circuit between the ground
node and z. The switches are n-transistors whose gates are the variables of
b, possibly negated. Furthermore, we have

b = “there is a path from ground toz in s”.

By the construction of s, if b holds and remains stable, z is eventually set
to 0. (For this reason, s is called a pull-down circuit) Hence, s is exactly the
implementation of production rule (3).

Using a symmetrical argument, we can show that the same series-paraliel
circuit as s, but with the power node and z connected, and whose switches
are p-transistors, implements the production rule

bneg — z1, (4}
where bneg is derived from b by negating all variables. (This circuit is called
a pull-up circuit.)

4 Operators

‘I'wo PRs that set and reset the same variable, such as

bl — 2%
b2 - z|,

(5)

are implemented as one operator.

Let s1 be the pull-up circuit corresponding to p1, and let 52 be the pull-
down circuit corresponding to b2. The two circuits are connected through
the common node z (see Figure 1). Since noninterference has been enforced,
~b1vab2 holds at any time. This guarantees the absence of a conducting path
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between power and ground when the operator is not firing. (A path may exist
for a short time when the operator is firing.)

Definition The operator implementing the two rules is called “combina-
tional” if 1 v b2 holds at any time, and “state-holding” otherwise.

By definition, if (5) is combinational, there is always a conducting path
between either VDD or GND and the output z. Hence, the value of the output
is always a strong 0 or a strong 1, and therefore 51 and s2 are together a valid
implementation of (5).

For example, PRs (1) and (2) together implement an inverter as represented
in Figure 2. The circuit of Figure 3 implements the nand-operator defined by
the PRs

anbk - zl

Lavabk —~ z1.

If {5} is a state-holding operator, ~bl A 1b2 may hold in a certain state. In
such a state, node z is isolated; there is no path between z and eitherVDD or
GND. In MOS technology, an isolated node does not retain its value forever;
eventually the charges leak away through the substrate and also through the
transistors of the pull-up and pull-down circuits. If the PRs of the operator are
fired frequently enough to prevent leakage, the implementation of Figure 1
can be used for a state-holding operator. Such an implementation is called
dynamic.

Figure 1. CMOS implementation of a combinational operator.

sl

52
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Otherwise, it is necessary to add a storage element to the output node
of a state-holding operator. Such an implementation is called static. In the
sequel, we assume that only static implementations are used for state-holding
operators.

(A standard CMOS implementation of such a storage element consists of
two cross-coupled inverters (see Figure 4). This implementation inverts the
value of z. The “weak” inverter, marked with a letter w on the figure, connects
z to either VDD or GND through a high resistance, so as to maintain z at its
intended voltage value [18].)

The implementation of a static state-holding operator is slightly more
costly than that of a combinational operator because of the need for a storage
device. Hence, given a pair of PRs that are not combinational, we may first
try to modify the guards —under the invariance of the semantics— so as to
make them combinational.

5 The Standard Operators

All operators of one or two inputs are used, and are therefore viewed as
the standard operators.

Figure 2. A CMOS inverter.
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5.1 One-Input Operators

The two operators with one input and one output are the wire:

Xwy =2 x — ¥l

ax yl,
and the inverter:

wwy = w +~— ¥l
x = yl.
Most operators we use have more inputs than outputs. In general, however,
the components we design have as many outputs as inputs. Hence, we need

to reset the balance by introducing at least one operator, the fork, with more
outputs than inputs. A fork with two outputs is defined as

xfip,z) = x wyl 2zl
wx —ylzl.
The wire and the fork are the only two operators that are implemented not

as a pull-up/pull-down circuit —called a restoring circuit— but as a simple
conducting interconnection between input and outputs.

Figure 3. CMOS implementation of a nand-gate.
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5.2 The Wire as a Renaming Operator

Because the implementation of a wire is the same as that of a node, the wire
behaves as a renaming operator when composed with another operator: The
composition of an arbitrary operator O with output variable x with the wire
x wy is equivalent to O in which x is renamed y. The composition of operator
O with input variable x with the wire y wx is equivalent to O in which x is
renamed y. (Observe that O can even be a wire.)

Unfortunately, the fork is not a renaming operator since the concurrent
assignments to the different outputs of the fork are not completed simulta-
neously. In order to use a fork as a renaming operator, we will later have to
make the timing assumption that such a fork is isochronic.

5.3 Combinational Operators with Two Inputs
We construct all functions B of two variables x and y such that
B — zi
B — zl.

We get for B: x Ay, x v y, and x = y. We will not list the functions cbtained by
inverting inputs of B. (In the figures, a negated input or outputis represented
by a small circle on the corresponding line.} This gives the following set:

Figure 4. A static implementation of a state-holding operator.

bl

b2

40
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The and, with the infix notation x,y)Aaz is defined as
xay +— 2zt
xvay +— zl.
The or, with the infix notation (x,y) ¥ Z, is defined as
xvy +~ zi
ax Ay +— Zz}.
The equality, with the infix notation (x, y)eq z, is defined as
x=y +— zi

x¢gy +— zl.

5.4 State-Holding Operators with Two Inputs

Next, we construct all different two-input-one-output operators of the form

bl w— Z1
b2 — zi

such that ~b1 v 7b2 holds at any time, but b1 # ~b2. We select for bl either
XAy, OLXV)Y Orx=y. For each choice of b1, we construct b2 as any of the
effective strengthenings of “b1.

For bl = (x A y), we get for b2: ax A7y, XA Y, X, and x # y. The first three
choices of b2 lead to the following state-holding operators:

The C-element.
xnNCz = XAy +— I
Ay — 2Zl.
(The C-element, introduced by David Muller, is de scribed in[15].)
The switch:
(xy)swz = XAy +— z1

WAy — Zl.
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The asymmaetric C-element.

(x,y)aCz = xAy + 21

ax = zl.

For b2 = (x # y), we get the operator
XAy +— 21
X # y — Zl .

If the stability condition is fulfilled, however, this operator is not state-
holding. Because of the stability requirement, the state in which ~xAy
holds —the “storage state”™— can be reached only from states x A 7y
and x A y. in both states, <z holds, and, therefore, 7z hoids in the
storage state. Hence, we can weaken the guard of the second PR as
(x #£y) Vv (7x Ay), i.e, x v y. Hence, the operator is equivalent to the
and-operator (x, Y) A Z.

For bl = (x v y), no effective strengthening of =kl is possible.

For k1 = (x = y), we get the operator:
x=y +— 21
XAy +— Z§.

If the stability condition is fulfilled, however, this operator is not state-
holding for the same reasons that the operator with bl = x Ay and
b2 =(x #y) is not.

5.5 Flip-Flop

The canonical form we choose for the flip-flop is

xVffz = x — 2zl

Ay zl,

which requires the invariance of w vy to satisfy noninterference. Observe
that the flip-flop (x, ) ffz can always be replaced with the C-element (x, )z,
but not vice versa,
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6 Multi-Input Operators

Since there are already 164 different operators with three inputs and one
output, we shall not pursue the systematic enumeration that we started with
two-input operators. We use n-input and, or, C-element, whose definitions are
straightforward.

We use a muiti-input flip-flop defined as

Koo X Y1,y Mffz w Viix — ozl
Vi — 2zl
where (Vi:-x)v (Vi:y) .

We also use the combinational ifoperator —sometimes called muitiplexer—

defined as
xy,2)ifu = (xAYIV(xAzZ) — ul
xAawviwanz) — ul.

The most general and most often used operator is the generalized C-element,
of which all other forms of C-elements are a special case. It implements a pair
of PRs

Bl » xt
B2 — x|
in which B1 and B2 are arbitrary conjunctions of elementary terms. (As usual,
the two guards have to be mutually exclusive.) For example,
aAbAac — xt
~and — x}
can be directly implemented with a generalized C-element. Observe that the

limiting factor for the size of the guards is not the number of inputs, but the
number of terms in a conjunction.

7 Arbiter and Synchronizer

So far, we have considered only PR sets in which all guards are stable and
noninterfering. But we shall have to implement sets of guarded commands
—selections or repetitions— in which the guards are not mutually exclusive,
as in the probe-selection example. Therefore, we need at least one operator
that provides a nondeterministic choice between two true guards.
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7.1 Arbiter

The simplest selection between nonexclusive guards is of the form

*[[e .- -
ny.... R
11,

where x and y are simple boolean variables, and the two guards are stable. In
order to distinguish among the three basic states of the system —i.e., neither
x nor y is selected, x is selected, or y is selected— we must introduce two
outputs, say u and v, as follows:

s[[x—ut; - - -
fy—vt, -+
1.

initially, =t A7v holds as coding of the state “no selection made”. Hence, when
the selection is considered completed, which is just a matter of definition, u
and v should be set back to false. We get

*[[x — ut; [x]; ul
Iy—vt [ vl {6)
1.

If =i A ~v holds initially, = v 7 holds at any time.

The preceding program is a description of the operator known as the “basic
arbiter” or “mutual-exclusion element,” denoted as {x, y} arb (u,v). Observe
that the choice between the two guards is not fair.

7.2 Synchronizer

When negated probes are used, for instance to implement fairness, we have
to implement selection commands with unstable guards. The synchronizer
is the only operator that accepts nonstable guards. It is defined as

*[[bAz—uf; [2], ul
§abaz—vl; [02]: vl {7}
.
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Variable b may change at any time from false to true, butboth b and z remain
true until ¥ or v has changed. Hence, the guard "k A Z is unstable, whereas
the guard b A z is stable. As in the arbiter case, if iz A v holds initially, -4 v v
holds at any time. (The synchronizer operator was introduced in [7].)

7.3 Implementation and Metastability

The PR sets for (6) and (7) necessarily contain unstable rules. The PR set for
the “unstable arbiter” is

XAV = uf
yAu — VI
axvy —  uj

awvu — vl

The PR set for the “unstable synchronizer” is

bazawv — ut
abazawu — Vi
AzvyYy w— Ul

azvu — v|.

The first two PRs of the arbiter are unstable and can fire concurrently. The
same holds for the first two production rules of the synchronizer: Since b can
change from false to true at any time, both guards may evaluate to true.

Let us analyze the PR set implementation of the arbiter. The synchronizer
case is very similar. The state x Ay A{u = v) of the arbiter is called metastable.
When started in the metastable state, with «u A v, the set of PRs specifying
the arbiter may produce the following unbounded sequence of firings:

*{(ut, vy (ul, vl

In the implementation, nodes u and v may stabilize to a common intermedi-
ate voltage value for an unbounded period of time. Eventually, the inherent
asymmetry of the physical realization (impurities, fabrication flaws, thermal
noise, etc.) will force the system into one of the two stable states where U £ V.
But there is no upper bound on the time the metastable state will last, which
means that it is impossible to include an arbitration device into a clocked
system with absolute certainty that a timing failure cannot occur.

The spurious values of wand v produced during the metastable state must
be eliminated since they violate the requirement 2 vav. Hence, we compose
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the “bare” arbiter with a “filter” taking u and v as input and producing uf and
vfas “filtered outputs”. The net effect of the filter is

uf v = (u A v), (v A-u).

(In the CMOS construction of the filter shown in Figure 5, we use the thresh-
old voltages to our advantage: The channel of transistor tl is conducting only
when (uz A=) holds, and the channel of transistor t2 is conducting only when
(v A ) holds.)

In delay-insensitive design, the correct functioning of a circuit containing
an arbiter or a synchronizer is independent of the duration of the metastable
state; therefore, relatively simple implementations of arbiters and synchro-
nizers can be used. In synchronous design, however, the implementations
have to meet the additional constraint that the probability of the metastable
state lasting longer than the clock period should be negligible.

Figure 5. Animplementation of the basic arbiter.

-
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8 Sequencing and Stability

In the second part of this chapter, we shall see how an arbitrary program in
the source notation can be decomposed —by a transformation called hand-
shaking expansion— into a collection of sequences of the type

S=x[lwol: to; W1]: t:.. . [waali tamil.

The w;, the wait-conditions, are boolean expressions, possibly jdentical to
true, and the ¢; are simple assignments. The extension to the case of multiple
assignments between the wait-conditions is straightforward.

The next step of the compilation procedure —the production-rule expan-
sion— (also to be explained in the second part) is the transformation of § into
a semantically equivalent set of production rules. Let

p=ibi tii0 i<n}

be such a sel.

Notations and Definitions For anarbitrary PR p, b.g and p.a denote
the guard and the assignment of p, respectively. The predicate R(a), the re-
sult of the simple assignment 4, is defined as: R(x1) = x, and Ri{x]} = "x. An
execution of a PR that changes the value of the assigned variable is called
effective; otherwise, it is called vacuous.

With these definitions, the stability of a PR can be reformulated as follows:

stability APRpisstableina computation if and only if p.g can be falsified
only in states where R(p.a) helds.

The production-rule expansion algorithm compiles a handshaking expan-
sion S into a set P of PRs, all of which are stable except those whose guards
contain negated probes. Since, as we shall see, the guards of the PRs are
obtained by strengthening the wait-conditions of §, the stability of the wait-
conditions is necessary 10 satisfy the stability of the PRs.

A wait-condition w is stable if once w is true, it remains true at least
until the completion of the following assignment. Unstable wait-conditions
can be caused by negated probes only. These cases are dealt with separately
by introducing synchronizers. (An example of how this is achieved is given
in Section 22.)

8.1 Sequencing

The set P of PRs implements S when the following conditions are fulfilled:
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1. Guard strengthening: The guards of the PRs of P are obtained by strength-
ening the wait conditions of §: Vi b; = w;and, in the initial state, wo = bo.

2. Sequential execution: (Ni - b; AR(t)) £1, i.e., at most one effective PR can
be executed at a time.

3. Program-order execution: The order of execution of effective PRs of P is
the order specified by S, called the program order, and no deadlock is
introduced in the construction of P.

As we shall see in Part 2, it is not always possible to construct, for a given
handshaking expansion, a PR set that satisfies the preceding three conditions.
In certain cases, the handshaking expansion must be augmented with assign-
ments to new variables, called state variables. This transformation, which is
always possible, will be explained in Part 2.

8.2 Acknowledgment

Fulfilling the second and third conditions requires that for any two PRs p :
b tand p’: b = ', such that p immediately precedes p’ in the program
order,

b’ = R(1)

holds in the states where p’ is effectively executed. We say that b’ is the
acknowledgment of t. Hence the following property:

Acknowledgment Property ForaPRset executed in program order,
the guard of each PR is an acknowledgment of the immediately preceding
assignment.

We shall see that the acknowledgment property is necessary but not suffi-
cient to ensure program-order execution.

We use two kinds of acknowledgments, depending on the type of variable
used in the assignment. But other forms of acknowledgments can be envi-
sioned. If t assigns an internal variable, then the acknowledgment is imple-
mented by strengthening b' as b’ AR(t).

For example, if t is x1, the acknowledgment is b’ AX.

If t assignsan external variable, i.e., avariable that implements a communi-
cation command, another kind of acknowledgment, which we shall introduce
later, can be used. For instance, if lo is an output variable used together with
input variable Ii to implement a so-called active handshaking protocol, a pos-
sible acknowledgment of lol is li, since li = lo at this point of the protocol.
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8.3 Implementation of Stability

Consider a PR set P, which implements a given program S. We are going to
show that the acknowledgment property, which is necessary to constructa P
that implements S, is also sufficient to guarantee stability.

The execution of a PR p of P establishes a path between a constant node
(either VDD or GND), and the node implementing the variable —say, Xx— as-
signed by p. Either p.g holds forever after p, or the firing of another PR/, the
invalidating PR of p, will establish -p.g, thereby cutting the path from the
constant node to x.

Let p be the complementary PR of p, i.e., the PR with the complementary
assignment. If the PR set contains both p and p, then it also contains I be-
cause of the noninterference requirement between complementary PRs. And
we have the order of execution:

pXI<p.

In all the states between [ and p, the original path to X is cut. In that case,
we have to see to it that the assignment to x is completed before the path is
cut. Hence the following requirement:

Completion requirement Assignment p.a is completed whena PR g
is completed whose guard is an acknowiedgment of p.a. The execution order
of the PR set must satisfy

p<qgxl.

Since this requirement is already implied by the acknowledgment property,
the construction of P automatically guarantees stability.

8.4 Self-Invalidating PRs

Definition A PR p is self-invalidating when R(p.a) = "p.g.

For example, " — x1is self-invalidating.

$elf-invalidating PRs are excluded by the completion requirement since it
implies I # p.

For instance, the circuit consisting of an inverter with its output connected
to its input is excluded by the completion requirement since it corresponds
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to the PR set:

wx — x1
x — xl]

and the two PRs of the set are self-invalidating. However, the PR set

x o= ¥l
y = Xl
x — yl

Ay — xl]

fulfills the completion requirement, aithough it is the same circuit as previ-
ously, since the only change is the addition of the wire y wx.

We eliminate such “disguised” self-invalidating PRs by adding the following
requirement:

Restoring Acknowledgment Requirement There is at least
one restoring PR r satisfying p<r %I, wherer is restoring if it is not part of
a wire or a fork.

With this extra requirement, all forms of self-invalidating PRs are elimi-
nated.

It is remarkable that the acknowledgment requirement, which is necessary
to enforce the sequential execution of a PR set, is also sufficient to satisfy sta-
bility. From now on, we can manipulate PRs as if the transitions were discrete.
We have, however, made no simplifying assumption on the physical behavior
of the system. The only physical requirement so far is that of monotonicity.

Another requirement on the implementation is that the rings of opera-
tors that constitute a circuit keep oscillating. It turns out that eliminating
self-invalidating PRs enforces the condition that a ring contain at least three
restoring operators, which is a necessary {and in practice also sufficient) con-
dition for the ring to oscillate, thanks to the “gain” property of restoring gates.
(See [14] for an explanation of gain.)

Part II: The Compilation Method

In this part, we describe how a program in the source notation is trans-
formed into a semantically equivalent set of VLS! operators. Four major trans-
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an intermediate program representation, between communicating processes
and PRs, that allows for important algebraic manipulations of the program:
reshuffling, process factorization, and process quotient. We illustrate the
method with a series of examples that covers practically all cases.

9 Process Decomposition

The first step of the compilation, called process decomposition, consists in
replacing one process with several processes by application of the following
rule:

Decomposition Rule A process P containing an arbitrary program
part S is semantically equivalent to two processes, P1 and P2, where Pl is
derived from P by replacing S with a communication action, C, on a newly
introduced channel (C, D) between P1 and P2, and P2 is the process x[[D —
S: D]l

The structure of P2 will be used so frequently that we introduce an operator
to denote it: the call operator. We denote it by (D/S), and we say that D calls
{or activates) S.

Observe that process decomposition does not introduce concurrency. Al-
though P1 and P2 are potentially concurrent, they are never active concur-
rently; P2 is activated from P1, much as a procedure or a coroutine would
be. The newly created subprocesses may share variables, but, since the sub-
processes are never active concurrently, there is no conflicting access to the
shared variables. The subprocesses may also share channels; this will require
a special implementation for such channels. Decomposition is applied for
each construct of the language. For construct S, the corresponding process
P2 can be simplified as follows:

If S is the selection [B; — $1[1 B, — Sz}, P2 is simplified as

«[[DAB; — 51;D
HEABZ-SZ;D 8)
1.
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If S is the repetition =[B; — S1] B, — Sz}, P2 is simplified as
«[[D A B; — 5
{DAB;—S;
{DA-B,AB,—D
1.

The assignment x := B, where B is an arbitrary boolean expression, is
implemented as the selection [B —x1§-B — xt], which gives for P2

6]

«{[DAB—xt;D
IDA-B—x};D
1.

The generalizations to the cases of an arbitrary number of guarded com-
mands in selection and repetition are obvious. All assignments to the same
variable are also grouped in the same process. Process decomposition is ap-
plied repeatedly until the right-hand side of each guarded command is a
straight-line program.

Process decomposition makes it possible to reduce a process with an ar-
bitrary control structure to a set of subprocesses of only two different types:
either a (finite or infinite} sequence of communication actions, or a repetition
of type (8) or (9).

10 Handshaking Expansion

The next step of the transformation, the handshaking expansion, replaces
each communication action in a program with its implementation in terms
of elementary actions, and each channel with a pair of wire operators. We
shall first ignore the issue of message transmission and implement only the
synchronization property of communication primitives.

Channel (X, Y) is implemented by the two wires (xo w yi) and (yo wxi). If X
belongs to process P1 and Y to process P2, then xo and xi belong to P1, and yo
and yi to P2. Initially, xo, xi, yo, and yi —which we will call the “handshaking
variables of (X, Y)— are false. Assume that the program has been proven to
be deadlock-free and that we can identify a pair of matching actions XandY
in P1 and P2, respectively. We replace X and Y by the sequences U, and U,,
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respectively, where

U, = xof; ixi]

(10)
U, = [yil; yot .
Also,
xo +— yit
axe = yil ()

yo v Xil
syo +— Xil,

by definition of the wires. By {10) and (11), any concurrent execution of Pl
and P2 contains the following sequence of assignments:

xol; yit, yol, xil .

10.1 Simultaneous Completion of Nonatomic Actions

We introduce a definition of completion of a nonatomic action which makes
it possible to use the notion of simultaneous completion of two nonatomic
actions.

By definition, the execution of an atomic action is considered instanta-
necus, and thus the simultaneous completion of two atomic actions does not
make sense. {Atomic actions are simple assignments x| and x|, and eval-
uation of simple guards, i.e., guards containing one variable. A wait action
of the form [ai] is a nonatomic action that may be treated as the repetition
«[ai — skip}.)

A nonatomic action is initiated when its first atomic action is executed. A
nonatomic action is terminated when its last atomic action is executed.

For nonatomic actions, the notion of completion does not coincide with
that of termination. A nonatomic action might be considered completed even
if it has not terminated, i.e., even if some atomic actions that are part of the
action have not been executed. The definition of suspension is derived from
that of completion.

Definition A nonatomic action X is completed when it is initiated and is
guaranteed to terminate, i.e., when all possible continuations of the compu-
tation contain the complete sequence of atomic actions of X.

The preceding definition can be further explained as follows: Consider a
prefix t1 of an arbitrary trace of a computation. (A trace is a sequence of
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atomic actions corresponding to a possible execution of the program.) The
completion of X is identified with the point in the computation where t1 has
been completed, if (1) X is initiated in t1, and (2) all possible sequences t2,
such that t1 extended with t2 is a valid trace of the computation, contain
the remaining atomic actions of X. Hence the completions of two nonatoniic
actions coincide if their completion points coincide.

(Observe that there may be several points in a trace that can actas comple-
tion point, which makes it easier to align the two completion points of two
overlapping sequences so as 10 implement the bullet operator.)

Definition Between initiation and completion, an action is suspended.

These definitions of completion and suspension are valid because they
satisfy the three semantic properties of completion and suspension that are
used in correcthess arguments, namely:

1. {X=x1 X {cX=x+1},

2. gX = pre(X), where pre(X) is any precondition of X in terms of the program
variables and auxiliary program variables,

3. If X is completed, eventually X is terminated.

These definitions will be used to implement the bullet operator and the
communication primitives as defined by axioms Al and AZ2. Consider the in-
terleaving of Uy and U,. At the first semicolon, i.e., after xo1, Uy has been
initiated, but it cannot be considered completed since the valid continuation
that does not contain U, does not contain the rest of U,. At the second semi-
colon, both U, and U, have been initiated, and thus all continuations contain
the rest of the interleaving of U, and U,. Hence, U, and Uy, are guaranteed to
terminate when they are both initiated, i.e., they fulfill A1 and A2.

10.2 Four-Phase Handshaking

Unfortunately, when the communication implemented by U, and U, termi-
nates, all handshaking variables are true. Hence, we cannot implement the
next communication on channel (X, Y) with U, and U,. The complementary
implementation, however, can be used for the next matching pair, that is:

D. = xol; [~xi]
D, = [wil yol.

The solution consisting in alternating U, and D, as an implementation of
X, and U, and D, as an implementation of Y, is called two-phase handshaking,
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or two-cycle signaling. Since it is in most cases impossible to determine syn-
tactically which X- or Y-actions follow each other in an execution, the general
two-phase handshaking implementations require testing the current value of
the variables as follows:

xo0 = xo; [xf=x0]

[yi # yol, yo =-ya.

In general, we prefer to use a simpler solution, known as four-phase hand-
shaking, or four-cycle signaling. In a four-phase handshaking protocol, X-
actions are implemented as “U,; D,” and Y-actions as “U,;D,". Observe that
the D-parts in X and Y introduce an extra communication between the two
processes whose only purpose is to reset all variables to false.

Both protocols have the property that for a matching pair (X, Y) of actions,
the implementation is not symmetrical in X and Y. One action is called active
and the other one passive. The four-phase implementation, with X active and
Y passive, is

X = xof; [xi]; xol; [wi] (12}
Y = [yi]; yel: [il; yol . (13)

(Later, we will introduce an alternative form of active implementation, called
lazy-active.} Although four-phase handshaking contains twice as many ac-
tions as two-phase handshaking, the actions involved are simpler and are
more amenable to the algebraic manipulations we shall introduce later. When
operator delays dominate the communication costs, which is the case for
communication inside a chip, four-phase handshaking will, in general, lead
to more efficient solutions. When transmission delays dominate the commu-
nication costs, which is the case for communication between chips, two-phase
handshaking is preferred.

10.3 Probe

A simple implementation of the probe X is xi, with X implemented as passive.
(Given our definition of suspension, the proof that this implementation of
the probe fulfills its definition is straightforward.)

A probed communication action X — ...X is then implemented as

xi— ...xof; ['wi]; xo0! .
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10.4 Choice of Active versus Passive Implementation

When no action of a matching pair is probed, the choice of which action
should be active and which passive is arbitrary, but a choice has to be made.
The choice can be important for the composition of identical circuits. A sim-
ple rule is that, for a given channel (X, Y}, all actions on one port {called the
active port) are active, and all actions on the other port {called the passive
port) are passive. If X is used, all X-actions are passive— with the obvious
restriction that Y cannot be used in the same program.

We shall see, however, that this criterion for choosing active and passive
ports may conflict with another criterion related to the implementation of
input and output commands.

10.5 Properties of the Handshaking Protocol

For a matching pair (X, Y) of actions implemented as {12) and (13), and the
wires (xo w yi) and (yo wxi), the concurrent execution of X and Y causes the
sequence of assignments

xol: yit; yol; xil; xol; yil; yol; xil,

called the handshaking protocol. The following properties of the handshaking
protocol play an important role in the compilation method.

Property 1 For xo and xi used as in the active protocol of (12}, xi is an
acknowledgment of xo{ and i is an acknowledgment of xol. For yo and yi
used as in the passive protocol of {13), i is an acknowledgment of yol and
yi is an acknowledgment of yol.

Property 2 In(12}and(13), D, and Dy are used only to reset all variables
to false. Hence, provided that the cyclic order of the actions of {12) and
(13) is maintained, the sequences D, and D, can be inserted at any place
in the program of each of the processes without invalidating the semantics
of the communication involved. This transformation, calied reshuffling, may
introduce a deadlock.

Property 3 The wait-actions of (12} and (13) are stable. Reshuffling main-
tains the stability.

Reshuffling, which is the source of significant optimizations, will be used
extensively. It is therefore important to know when Property 2 can be applied
without introducing deadlock.
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There are two simple cases where the reshuffling of sequence “Ue; Dx;S”
into sequence “U,; 5; D, does not introduce deadlock:

S contains ho communication action, or

X is an internal channel introduced by process decompaosition.

11 Production-Rule Expansion

Production-rule expansion is the transformation from a handshaking ex-
pansion to a set of PRs. [t is the most crucial and most difficult step of the com-
pilation since it requires the enforcement of sequencing by semantic means.
It consists of three steps:

1. State assignment,
2. Guard strengthening,

3, Symmetrization.

We shall explain the algorithms for production-rule expansion with an ex-
ample: the implementation of the simple process (L/R), where R is an active
channel. This process is one of the basic building blocks for implementing
sequencing. The handshaking expansion gives

= [[li}; rot; [ril; rol; [~ril; Iot; {41}, lol]. (14)

We now consider the handshaking expansion as the specification of the im-
plementation: Any implementation of the program has to satisfy the ordering
defined by (14). The next step is to construct a production-rule set that satis-
fies this ordering. We start with the production-rule set that is syntactically
derived from {14):

I — vrol
ri — rol
i o~ ot
ali o~ lo}.
(As a clue to the reader, PRs of a set are listed in program order.)
Since the program is deadlock-free, effective execution of the PRs in pro-
gram order is always possible. Some other execution orders, however, may
also be possible. The production-rule set satisfies the handshaking-expansion

specification if, and only if, the only possible execution order is the program
order. If execution orders other than the program order are possible for the
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production-rule set, the guards of some rules are strengthened so as to elim-
inate these execution orders.

In our example, program order is not the only execution order for the
syntactic production-rule set: Since -ri holds initially, the third PR can be
executed first. This is also true for the fourth PR, but the execution of the
fourth rule in the initial state is vacuous. Because all handshaking variables
of R are back to false when R is completed, we cannot find a guard for the
transition lot that holds only as a precondition of o7 in (14). Hence, we cannot
distinguish the state following R from the state preceding R, and thus the
sequential execution condition introduced in Section 8 cannot be satisfied.

This is a general problem, since it arises for each unshuffled communica-
tion action. In order to fulfill the sequential-execution condition, we have to
guarantee that each state of the handshaking expansion is unique, i.e., that
there exists a predicate in terms of variables of the program that holds only
in this state. The task of transforming the handshaking expansion so as 1o
make each state unique is called state assignment.

11.1 State Assignment with State Variables

The first technique to define uniquely the state in which the transition lot is
to take place consists in introducing a state variable, say x, initially false.
Handshaking expansion (14) becomes

« [lli}; rot; [ril; xT; [x1; rol; [aril; dot; [Ali]; x4 [x]; lol]. (15)

Observe that (15) is semantically equivalent to (14} since the two sequences
of actions that are added to (14), namely, x1; [x] and x!; [<x], are equivalent to
a skip. (The newly introduced variable x is used nowhere else.)

There are several places where the two assignments to the state variable
can be introduced. In general, a good heuristic is to introduce those assign-
ments at such places that the alternation between waits and assignments is
maintained. There are other heuristics, however, that can play a role in the
placement of the variables.

Once state variables have been introduced so as to distinguish any two
states of the handshaking expansion, it is possible to strengthen the guards
of the PRs to enforce program-order execution. The basic algorithm for guard
strengthening can be found in [10]. We shall not describe it here. Applied to
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(15), it gives

“xAli — vrot (16)
ri — x1 (17)

X ~— rol (18}
xAari — ol {19)
Al - x| (20)

x ~— lo}. (21}

It is easy to check that the acknowledgment property is fulfilled and that the
only possible execution order for the preceding production-rule set is the
program order defined by (1 5).-

12 Operator Reduction

The last step of the compilation, called operator reduction, groups together
the PRs that assign the same variables. Those PRs are then identified with
{and implemented as) an cperator. The program is thus identified with a set
of operators.

Since we have enforced the stability of each rule and noninterference be-
tween any two complementary rules, we can implement any set of PRs di-
rectly. (For reasons of efficiency, we must see to it that the guards do not
contain too many variables in a conjunct, which would lead to too many
transistors in series. Hence, the implementation of the set may also involve
decomposing a PR into several PRs by introducing new fnternal variables.)

The direct implementation of the PR set (16) through (21) is straightfor-
ward:

{(16) and (18) correspond to the asymmetric C-element (7, li) aCro.

(19) and (21} correspond to the asymmetric C-element (x, ri) acClo.

(17) and (20) correspond to the fiip-flop (¥, I ffx

If the preceding operators are implemented as dynamic, this implemen-
tation of process (L/R} is the simplest possible. If static implementations
of the operators are required, another implementation might be considered
with fewer state-holding elements since, as we have explained in the first
part, static state-holding operators are slightly more difficult to realize than
combinational operators.

A last transformation, called symmetrization, may be performed on the PR
set to minimize the number of state-holding operators. Since symmetrization
also introduces inefficiencies of its own, however, it should not be applied
blindly.
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13 Symmetrization

Symmetrization is performed on the two guards of PRs b1 — z1 and b2 —
z |, when one of the two guards, say, b1, is already in the form x Ab2. If
we replace guard b2 with x v b2, then the two guards are complements of
each other, i.e., the operator is combinational. Of course, weakening guard
b2 is a dangerous transformation since it may introduce a new state where
the guard holds. We have to check that this does not occur by checking the
following invariant:

Given the new rule =x v b2 — z|, 7z must hold in any state where - A °b2
holds, i.e., we have to check the invariant truth of

xvb2vaz.

13.1 Operator Reduction of the (L/R)-element

The symmetrization of PRs {16) and (18}, and of (19) and (21) of the {L/R)-
element, gives

“xAli — rol (16)
ri — xt 17
alivx — vro} (18)
xAwi — ot (19}
A o~ X} (20)
rivax — lol. 21)

(16) and (18) correspond to the and-operator (7, li) Aro.

(17) and (20) correspond to the flip-flop (ri, 1i} ffx.

(19) and (21) correspond to the and-operator (x,wi)Alo.

(17) and (20) can also be implemented as the C-element {li,riy Cx.

The resulting circuit is shown in Figure 6. (The dot identifies the input thatis
activated first.) This implementation of (L/R), either with a flip-flop or with a
C-element, is called a Q-element. The Q-element implementing {L/R} as before
is described by the infix notation (i, lo) Q (¥i, ro).

14 Isochronic Forks

In the previous operator reduction, Ii is an input to the flip-flop Ui, ri) ffx
and to the and-operator {li,7x) A ro. Formally, in order to compose the PRs
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together to form a circuit, we have to introduce the fork li f(1,12) and replace
Ii by I1 as input of the and-operator, and by 72 as input of the flip-flop. We
also have to introduce the forks ri f(rl, r2) and x f(x1, x2) for the same reason.

Let us analyze the effect of the first fork only. The PR set that includes the
PRs of the fork is

i — 121 (16a)
wall — rol : {16b)
ri — xt (17)
Alivx — rol (18)
xAa-ri o~ lo} (19}
Ali = 1112) (202)
a2 — x] (20b)
rivw ~ lol. (21)

Now we observe that transition /17 of (16a) is ackhowledged by the guard of
(16b) but I21 is not, and transition 12} of (20a) is acknowledged by the guard
of (20b) but /1} is not. Hence, the assignments [21 and 11} do not fulfill the
completion requirement and thus are not stable!

We solve this problem by making a simplifying assumption: We assume
that the fork is isochronic. That is, the difference in delays between the two
branches of the fork is shorter than the delays in the operators to which the
fork is an input. Hence, when a transition on one output is acknowledged and

Figure 6. Implementation of (L/R) with a Q-element.

li /—D_m li . ro
ff
Fi - ri
(b)

(a)
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thus completed, the transition on the other output is also acknowledged and
thus completed.

This is the only timing condition that must be fulfilled. In general, the
constraint is easy to meet because it is one-sided. The isochronicity require-
ment is more difficult to meet, however, when a negated input introduces an
inverter on a branch of the fork, since the transition delays of an inverter
are of the same order of magnitude as the transition delays of other opera-
tors. We have proved that, for the implementation of each language construct,
these inverters can always be eliminated from the isochronic forks by simple
transformations.? (See [1, 2}.)

In [11], we have proved that the class of entirely delay-insensitive circuits
is very limited: Practically all circuits of interest fall outside the class. We
believe that the notion of isochronic fork is the weakest compromise to delay-
insensitivity sufficient to implement any circuit of interest.

Which forks have to be isochronic is easy to decide by a simple analysis
of the PR sets. For instance, the fork ri f(r1,r2) also has to be isochronic, but
the fork x f(x1, x2) does not. We shall ignore the issue of isochronic forks in
the rest of this presentation.

15 Reshuffled Implementations of (L/R)

We illustrate the use of reshuffling by deriving two other implementations
of (L/R). If L is an internal channel introduced for process decomposition,
we can reshuffle the handshaking expansions of L and R without the risk of
introducing deadlock. Let us return to handshaking expansion (14).

15.1 First Reshuffling

We postpone the second half of the handshaking expansion of R —i.e., the
sequence ro}; [+ri]— until after [~1i]. We get

«[[li}; rot; [ri}; Iot; (I rol; [oril; loll.

The syntactic PR expansion we now derive is already “program-ordered™

i ~ rot
ri = lot
i ~ rol

i — lo}.

3. These transformations have not been applied to the circuits presented here as examples, but
they are always applied before the circuits are actually implemented.
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The first and third rules specify the wire {Ii wro); the second and fourth rules
specify the wire (ri wlo). Hence, the implementation reduces to two wires!

15.2 Second Reshuffling: The D-element

We now postpone the whole handshaking expansion of R until after [-li]. We
get

*[[1i]; fot; [Ali]; rot; [ril; rol; [ril; lol}.
We need to introduce a state variable, say x, as follows:
«[[li]; x: [X]; JoT; [i); rol; [ril; xL; [x]; rol; ri]; Iol].

The PR expansion gives

I - xt
(rivix — ot
xanli — rol

ri — x|
(livinx — rol

wAr — lo].

The terms between parentheses have been added for symmetrization. The
operator reduction gives

(i) ff x
(ri,x) v lo

(=} A ro.

The flip-flop can be replaced with the C-element (i, ariy Cx. The circuit, shown
in Figure 7, is called a D-element.

16 Sequencing

There are many ways to implement the sequencing of n arbitrary actions.
We shall introduce the basic operators that are used in the most straightfor-
ward implementations.
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16.1 The Active-Active Buffer

Consider the program =[$;;S;], where S; and S, are two arbitrary program
parts. Process decomposition of this program gives

#[L; R {L'/S1) 1 {R'/S2) .
Hence the basic sequencing operator is the process
B(L, R.)= «[L;R],

where both L and R are active. This process is called an active-active buffer.
The handshaking expansion gives

* [lot1; [}i1; lo); [il; rot; (ril; rol; [orill. {22)
Since ri is false initially, we can rewrite {22) as
* [[~ri]; lot; Uil lol; [Hl; rot; [ril; rol]. (23)

By comparing (23} with (14) —the handshaking expansion of the Q-element—
we observe that B(La, Ra) = (-ri, ro) Q(li, Io) , which gives the implementation
of Figure 8.

16.2 The (L/A;R)-element

In order to generalize the preceding construction to the case of an arbi-
trary number of actions, we must implement the generalization of the (L/R)-

Figure 7. The D-element.
" =

lo ¥i
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element. Sequence
*[51:55;...:50] (24)

can be decomposed into a number of shorter sequences by repeatedly apply-
ing process decomposition. There are as many ways to decompose {24) as
there are binary trees of n leaves. But observe that, if n> 2, all decomposi-
tions will require at least one process of the form

{L/A}R},

where A and R are active communication actions. (The semicolon binds more
tightly than the process call.} We shall use two different reshufflings to im-
plement this process. Again, these reshufflings maintain the semantics of the
original program if the handshaking expansion of L' is not reshuffled. The
first reshuffling is

[[I71; aot; ai]; lot; [1Ii}; aol; [-ail; R; lol].

We decompose it into two sequences by applying a process-factorization de-
composition described in [10]:

(+[[i); aot; [51i}, aoll
Il * {iail; lo1; [~ail; R: lol]
).

The first sequence is the wire (i wao}. The second sequence is the D-element
(ai, o) D(ri, ro).

Figure 8. Implementation of the active-active buffer with a Q-element.

Ii ro

ri
o
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The second reshuffling is
«{[li}; A; rot; [ril; lot; [Alil; rol; [~ril; loll.

Again, we decompose it into two sequences by process factorization:

(*{[ri]; lot; [-ri]; lol]
| « {[iil; A; rot; [Hil; rol]
).

The first sequence is the wire (ri wlo). The second sequence is the Q-element
(li, ro) Q(ai, ao). Both implementations are shown in Figure 9.

Now the implementation of a sequence of n actions is straightforward. For
instance, for n = 4, we have two “linear” decompositions of (L/S1;5z2;53;54).
The first one is

WL/S Lo (Li/S2: L) (L2/53:54) .
The second one is
((L/L2:Sa) N (L2/Ly; S3) 1 {L1/513S2)) .

These two decompositions lead to the linear implementations shown in Fig-
ure 10.

16.3 The Passive-Active Buffer

In order to compose one-place buffers in a linear chain, one channel must be
active and the other one passive. We implement the buffer with L passive and
R active. This version is denoted by B(L,,Ra). In order to take advantage of

Figure 9. Implementations of the (L/A;R)-element,

e i s i
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the active-active case, we decoinpose the buffer into two processes g and {:

*[D;R]
(D/L}.

n

q

Process q is an active-active buffer. The compilation of t is straightforward.
The handshaking expansion gives

«[[dil; [Hi]; lot; [AliL; lo}; dot; [dil; dol}.

Since D is an internal channel, we can reshuffle the sequence [~/i}; lo} with
respect to D without introducing deadlock. (Also observe that since do] re-
mains the last action of the sequence, we have not changed the order of L
relative to R.) We get

«{[di]; [li]; lot; dot; [di}; [Ali]; lol; dol].

The PR expansion leading to the circuit of Figure 6 is

dinli — loldotl
adiali — loldol .

Process ¢ is used to connect the two ports of a channel when they are both
active. It is called a “passive-passive adaptor”™. The complete circuit is shown
in Figure 11.

The passive-active buffer can be compiled directly by introducing a state
variable. The circuit obtained is slightly different. See [8].

Figure 10. Implementations of {L/S1;52:53;54).

5 e T Wy B
L | 5 D 52 D 5 D 54
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17 Single-Variable Register

Consider the following register process, which provides read and write
access to a simple boolean variable, x:

#[[P— P2 _
1G—Q!x (25)
1.,

where P v @ holds at any time.

The handshaking expansion of (25) uses the double-rail technique: The
boolean value of x is encoded on two wires, one for the value true and one
for the value false. Input channel P has two input wires, pil for receiving
the value true and pi2 for receiving the value false, and one cutput wire,
po. Output channel Q has two output wires, gol for sending the value true
and go? for sending the value false, and one input wire, gi. Each guarded
command of (25) is expanded to two guarded commands:

«([pil — x1; [x]; pot; [pill; pol
1 pi2 = xI; [x]; pet; [wi2l; pol
[ x Agi— qolt; [ail; qol} (26)
[ ~x A gi — go2¥; [gil; qo2l

1.

Figure 11. Animplementation of the passive-active buffer.

li do ro
Q
ri
dr o Pre——m-o
lo
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17.1 Mutual Exclusion between Guarded Commands

We are now faced with a new problem: enforcing mutual exclusion between
the production-rule sets of different guarded commands. (This problem is
not concerned with making the guards of the different commands mutually
exclusive. For the time being, we are considering only examples where the
guards of the commands are already mutually exclusive.) Let us illustrate our
problem with the compilation of the first two guarded commands. If we just
concatenate the production-rule sets of these two commands, we get

pil — x1
pil Ax — pot
apil — pol
piz — x|
pi2a-x w+ pol
api2 =~ pol.
We now observe, however, that the second and the sixth guarded commands
are interfering (they set and reset the same variable po), and that, for reasons
of symmetry, the same holds for the third and the fifth PRs.

Hence, the problem of ensuring mutual exclusion between PRs of different
guarded commands is the same as enforcing program order between PRs of
the same guarded command. We use the same technique, which consists in
strengthening the guards of the productionrules, if necessary, by introducing
state variables to distinguish between the states corresponding to each true
guard.

In the case at hand, we strengthen the guards of the third and the sixth
rules as

X Apil — pol
X Api2 — pol.

The rest of the implementation is straightforward. The first and fourth PRs
correspond to the flip-flop (pil, 7pi2) ffx. The other PRs can be transformed
into

(il Ax}v{pi2 Anx) — pol
(pil AX)v({pi2Aax) — pol,

which is the definition of the if-operator {pil, pi2, x) if po .
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The production-rule expansion of the last two guarded commands of (26)
gives
xXAaqgi — qolt
wvagi ~ goli
wxagi — go2i
xvagi — qgo2l,

which corresponds to the two operators (x,gi) A gol and (", qi) A go2. The
circuit is represented in Figure 12.

In the next example, we shall refer to the implementation of the first two
guarded commands of (26} as the register operator:

(pil, pi2) reg (po,x).

We shall refer to the implementation of the last two guarded commands of
(26) as the read operator:

{qi,x) read (qol, go2).

18 Implementation of the Stack

The implementation of the stack will be used to explain the general method
for implementing communications that involve passing messages. The method

Figure 12. Single boolean register.
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relies on the time-honored “divide-and-conquer” principle: We first construct
the so-called control part of the program, which is the original program where
the messages have been removed from each communication action. We then
combine this control part with a data path, which is a program implementing
the assignment parts of the communication actions. (See Figure 16 in Section
20.) The basic technique for combining control and data was introduced in

[9].

18.1 The Control Part of the Stack

The control part of the stack consists of programs E and F, from which mes-
sage communication has been removed. We assume that the stack is empty
initially. We introduce the channel (¢, t'} so that F can be called from within E
by process decompaosition. We get
E = #[fin—int
[ out — get; out

1l

x[[t! AT — put; in

"
|

§t Aout— out; t'
1

In the handshaking expansion, we let the choice of active and passive com-
munications be dictated by the occurrence of the probes. {We will, however,
return to this choice later.} We get

E «[[~ti A ini — inot; [=inil; inol; tof; {ti]; tol

[l ~ti A outi — getot; [geti}; getol; [~getil; outol; [nouti); outol
1

F = s[[ti' A ini— putot; [puti};, putol; [~putil; inot; [inil; inol
[ ti' A outi — outot; [routil; outol; to'1; [~ti']; to'}
1.

Observe that, after handshaking expansion, the symmetry between E and F
has been restored. The choice of whether ti or ti’ should be negated in the
guards determines whether E or F should be called initially, i.e., whether we
start with an empty or a full stack element.
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18.2 Compilation of E

The first guarded command, E1, is a standard passive-active buffer. The sec-
ond guarded command, E2, is a standard Q-element. The implementation of
E must combine the implementations of F1 and E2 in a way that enforces
mutual exclusion between the execution of E1 and that of E2.

Since the execution of in and that of out are mutually exclusive, it suf-
fices to guarantee that when in is completed in E1, E2 cannot start until t
is completed. We introduce the variable z {(initially true} in the handshaking
expansion of E1, as indicated in Figure 13, and we strengthen the guard of
E2 with z. We get

El 7 Adni— inot; z}; [dz); [Hinily inol; tot: [til; tol; [~ti}; z1,

E2

-ti A outi A z — getol; [geti]; getol; [getil; outo?l; [~outil; outol .

Now E2 cannot start until z{ is completed, i.e., until F1 is completed. Since,
by the structure of E1, z = 1ti, we can simplify the guard of E2 to outi A z. For
symmetrization, we also weaken ~outi as 7outi v-z. Hence, mutual exclusion
is enforced by replacing input outi with the and-operator {(outi, z} A outi’ in
the Q-element implementation of E2. This gives the circuit of Figure 14 as an
implementation of E.

Figure 13. Implementation of the first g.c. of E with variable z.

ini

ino
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18.3 Compilation of F

The compilation of F1 is identical to that of E2 with the appropriate change of
variables. The compilation of F2, however, can be simplified by reshuffling.
Since channel {t, t') is internal, we can reshuffle the handshaking sequence of
t' without deadlock. The handshaking expansion of F2 becomes

ti' A outi — outol; to'l; [t A moutil; outol; to’l,

which compiles immediately into the “forked” C-element (ti’, outi)yC{outo, to').
The reshuffling guarantees that F1 cannot be started before F2 is completed.

The channels in and out are used in both E and F, so we must merge the
local copies of in and the local copies of cutina standard way that we do not
describe here. The resulting circuit for the control part of the stack element
is shown in Figure 15.

Figure 14. Implementation of E.
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19 Implementation of the Data Path

We now have to extend the implementation of the control part §2 so as
to obtain an implementation of the whole program S1. We want to leave 52
unchanged by introducing a datapath process, P, such that the parallel com-
position of S2 and P implements S1.

The channels in, out, get, put of 52 are renamed in', out’, get',put'. P com-

Figure 15. The control part of the stack element.
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municates with S2 via i, out’, get’, put' and with the environment via in, out,
get, put. (See Figure 16.)

Let € be a channel of S1, and C’ be the renamed channel of 52 to which C
corresponds. For {52 || P) to implement S1, each communication on C must
coincide with a communication on C'; i.e., P must implement the so-called
channel interface process

Ic = *[C . C’] .

Hence, P has to implement the four channel interfaces:
* {in’ » in?x]
* [out’ » out!x]

+ [get’ « get?x]
= [put’ » put!x].

20 Implementation of Channel Interfaces

There are four types of channel interfaces, depending on whether the port
is active or passive, and whether the communication is an input or an output.

Figure 16. Adding the data path.
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20.1 Input Actions on a Passive Port

We want to implement the interface I for action C?x on the passive port C. I¢
communicates with 52 by the active port ', and with the environment by the
passive port D. Furthermore, in the standard double-rail encoding technique,
the two-wire implementation (ci, co} of C has to be interfaced to the three-wire
input port D in which the two input wires, dil and di2, are used to encode
the two values of the incoming message. (See Figure 17.)

I- has to implement an interleaving of the following three sequences:

Se = x[ci't; [co'); ci'l; [eo’]]
Sp = +[[dil vdi2); dof; [~dil A di2]; dol]
Sy = s=[[dil—xt; x) [ di2—x}; [x]]].

An implementation of C’ » D interleaves sequences S¢ and S; as
* [[dil v di2]; ci't; [co']; dot; [hdil Andi2]; ci'l; [~co'); dol]. (28)

In the interleaving of (28) and Sy, the assignment to x is inserted after {co’]
so as to ensure that communication action C has been started when the as-
signment to x is performed:

x[[dil v di2]; ci'l; [co’ Adil — x1; [X]] co’ Adi2 — x1; [X]];
dol; [~dil A adi2]; ci'l; [co']; dol].

(29)

Figure 17. Channel interface for input port.
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Next, we factor (29) as
= [[dil v di2]; ci't; [~xdil A-di2); ci'l] (30)
and

*[[co’ A dil — x1; [x]; dot: [nco']; dol
[ co’ A di2 — x1; {7x]; dot; [co’]; dol (31)
1.

Sequence (30) is realized by the operator {dil,di2) v ci’. We factor (31) so as
to isolate the register part:

(co', dilyaCxl = =[[co' adil]; x11; [rco’]; x11]

{co', di2)aC x2 «[[co’ A di2]; x21; [1co']; x21]

(x1,x2) reg (x,do) = #[[x1 — x1; [x]; det; [x1}; do!
I x2 - xi; [x]; dot; [w2]; dol
1.

The implementation is shown in Figure 18.

20.2 Input Actions on an Active Port

For port C active, the communication variables of the interface I remain the
same. But now the handshaking expansions of ! and D are different, since
C' is passive and D is active, We get

Sc = #[[co'}; ci'l; [eo'); ci'l]
Sp = *[dot; [dilvdi2]; dol; [dil Adi2]]
Sx = #[[dil —x1; [x]] di2— x|; [«

(Observe that Sy is not changed.} An interleaving of S¢ and Sp that implements
C’ » D is the interleaving corresponding to two wires:

[[co']; dot; [dil v di2); ci't; [co']; dol; [dil Adi2]; ci'l].

As to the implementation of the assignment to x, we now observe that, since
C and D are active, there is no risk of the assignment to x being started before
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C is. The interleaving obtained is

+[co']; dot; [dil —xi | diz —xl];
ci'l; [co']; dol; [~dil A ~di2]; ci'l],

(32)

which can be factored into the wire
(co' wdo) = x[{co’]; dot; [co]; dol]
and the register
(dil,di2) reg (x,ci”) = =[[dil —x1; [x]; ci'l; [~dil]; ')
0 di2 — x1; [} ci'l; [di2); ci')
1.

The implementation of the interface is shown in Figure 19.

20.3 Cutput Actions

In the case of an output, like out!x or put!x, the implementation turns out to
be the same for passive and active ports. Given the same nomenclature as in

Figure 18. Input actions on passive port.
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the input case, port D is now implemented with two output variables, dol and
do2, and one input variable, di. Port {’ is not changed. The rest of the deriva-
tion is straightforward and is left as an exercise for the reader. It leads to a
wire and a read operator, which we have introduced in the tmplementation
of the register:

diwcin = «[|di]; ci't; {~di]; ci'}
{co’, x) read (dol,do2) = 7:{[xAco’—~dolT; [vco']; doll

1 A co’ — do21; [co']; do2]

II.

The only difference between the active and the passive cases is that, in the
active case, the read is activated first. In the passive case, the wire is activated
first. The circuit is shown in Figure 20,

20.4 Active Input and Passive Output

A somewhat surprising result of this implementation of input and output
commands is that, contrary to common belief, it is simpler to implement in-
put commands with active ports than with passive ports. The gain is quite

Figure 19. Input actions on active port.
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important: For n bits of data, the active implementation saves 2 x n asym-
metric C-elements and n or-gates. On the other hand, the implementation of
output actions is the same for active and passive ports.

Therefore, we shall always implement input actions with active ports. When
the input port is probed, like in in the stack example, we shall use a slightly
more complicated implementation of the handshaking protocol that makes
it possible to probe an active port.

20.5 Lazy-Active Protocol

Consider the active implementation of communication command X:
xot; [xi]; xo); [xi] .

We introduce an alternative active protocol, called lazy-active:
[xi]; xeT; [xi]; xo} -

The lazy-active protocol is derived from the active one by postponing wait
action [-xi] until the beginning of the next communication on X, and by adding
a vacuous wait action [xi] at the beginning of the first communication X,
Hence, the lazy-active protocol is a correct implementation.

Consider sequence X;S, where S is an arbitrary program part. With X lazy-
active, half of the communication delays overlap with the execution of 5. The

Figure 20. Output-action interface.
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gain is particularly important when data communication is involved, since
half of the data-transmission delays and half of the “completion-tree” delays
can overlap with the rest of the computation.

This important property of lazy-active protocols was discovered recently
by Steve Burns. All input actions are now implemented as lazy-active. We have
not done so in the stack, which is an older design.

21 The Complete Circuit for the Stack

The sharing of register x by ports in and get has to be implemented ei-
ther by a multiplexer or by a multiport flip-flop. Since only two ports share
the register, we choose to use a dual-port flip-flop. The complete datapath is
shown in Figure 21.

The complete circuit obtained by composing the different parts together
is shown in Figure 22. An important optimization has been added to the

Figure 21. The complete datapath.
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Figure 22. The complete circuit for a one-bit stack element.

geto

outi w 1 J
<C> 9
= pULSO
insi

ino <-G_ putsi

- pluti

ini2

_D-» puto2
’__D——— putal

ini2 ‘—Gr@__ . gen-z
outol ._-G‘-C getil




Section 22 A Delay-Insensitive Fair Arbiter 59

design. It concerns the implementation of the second guard of E:
out — get?x; out!x.

We observe that the value of x involved in the second action (out!x} is the
same as the value of x involved in the first action (get?x). We can therefore
encode the transmitted value in the handshaking expansion of the guarded
command without having to use register x. We are tempted to make this opti-
mization available to the programmer by allowing assignments to ports. We
would then write

out — out!get .

The preceding modification leads to a significant simplification of the circuit
since we can eliminate a D-element, and, for each bit of the data path, we
can eliminate an IF-element and replace the multiport flip-flop with a simple
flip-flop. The chip we have fabricated includes this modification, as well as
the optimization that consists in making input port in active.

22 A Delay-Insensitive Fair Arbiter

This last example addresses the issues of arbitration between guards and
unstable guards. We have aiready discussed the metastability property of ar-
biters. The realization of a delay-insensitive arbiter, however, raises another
issue: fairness. An arbiter is strongly fair when a pending communication re-
quest is granted after a bounded number of other requests are granted. An
arbiter is weakly fair when a request is granted after a finite but possibly
unbounded number of other requests. Whether it is possible to construct a
delay-insensitive fair arbiter has been, so far, an open question. It has been
conjectured that delay-insensitive fair arbiters do not exist. In this example,
we prove the existence of delay-insensitive fair arbiters by constructing one.

22.1 A Fair-Arbiter Program

The process fsel described in the first part defines a fair arbitration program
between two unrelated inputs. We choose to implement the following simpli-
fied version of fsel:

« {[A — A "A — skip); [B — B[ B — skip]]. (33)

According to (33), when A holds, A will be completed after at most one B ac-
tion, regardless of the current state of the computation. Hence, the arbiter is
strongly fair towards requests A and B. Assume that A’ is pending at a certain
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point of the computation. By definition of the probe, A is true eventually;
i.e., a finite but unbounded number of B actions can be completed between
the moment gA' holds and the moment A holds. Hence, the arbiter is only
weakly fair towards requests A’ and B'.

Therefore, with this definition of suspension of an action, we can say that
the arbiter is strongly fair towards requests that have reached the arbiter
and weakly fair towards all requests. (We could redefine the suspension of a
communhication action X such that gX holds only when the initiation of action
X can be observed by the other process. With this definition of suspension,
we have g4 =A. The arbiter is then strongly fair towards all requests.)

22.2 The Compilation

Applying the process decomposition rule, we decompose (33) into three pro-
cesses (P1 || P2 §| P3). Channels (C, D) between P1 and P2, and (E, F} between

P1 and P3 are introduced:

Pl = <«[E.C]
P2 = *[[DAB-B.D
IDA-B—=D

1l

P3 = s[[FAA—A;F
[FA~A—F
1.

Ports D and F are implemented as passive; ports C and E are implemented
as active. Hence P1 is the standard active-active buffer. The handshaking ex-

pansion of P2 gives

P2 = «x[[diA bi— bot; [4bil; bol; dot; [hdil; dol
[ di A abi — dot; [~dil; dol
1l

Because bi can change from false to true asynchronously, the second guard
of P2 is not stable; i.e., its value can change from true to false at any time.
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In order to make both guards.of P2 stable, we introduce the synchronizer

sync = ={[diAbi— ul; [di]; ul
[l di A bi — vt [di); vl
1.

Sync is the standard operator we have described in Part 1. We now have to find
a process, X, such that (X[isync) = P2 . Since sync is entirely defined, we would
like to be able to perform the inverse operation of ||, or “process quotient”,
so as to compute X as X » (P2 + sync) . A way to perform this quotient is
to remove all actions of sync from P2, and then to check whether the result
fulfills (X||sync) = P2.

To perform the quotient as suggested, P2 should be extended to contain afl
actions of sync, so that the orders of actions are compatible in sync and in the
extended version of P2. (This procedure is explained in [10].) The extension
of P2 gives

*[[ di A bi — ut; [u); bot; [bi]; bol; doT; [dil; ul; [~ul; dol
i di A ki — vt; [V]; dot; [dil; vi; [l dol
1.

We obtain for X

*[[{u — bol; [bi]; bol; dot; [ul; dol
[ v—=dot; [V]; dol
1.
The compilation of the first guarded command is facilitated if transition bol is
postponed until after [~u]. This transformation does not introduce deadlock

since the completion of D does not depend on the completion of 8. After this
transformation, the PR expansion gives

u — bot AU — bol
uAabi — dot v — dol
bivau w— dol v - do}.

The operator reduction, which includes the introduction of auxiliary variables
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do’ and do”, gives

u w bo

{u,-bi) A do
v w do”
(do',do") v do.

The circuit is shown in Figure 23. The implementation of P3 is identical.

22.3 The Circuit

The final circuit, shown in Figure 24, is obtained by composing the two iden-
tical circuits implementing P2 and P3 with the circuit of P1. The reshuffled
version of P1, consisting of a wire and an inverter, can also be used if it can be
proved that the reshuffling does not introduce deadlock. The circuit shown in
Figure 24 includes a minor optimization that eliminates the negated inputs
that are also the output of a fork.

23 Conclusion

We have described a method for implementing a concurrent program (a
set of communicating processes) as a network of digital operators that can
be directly mapped into a delay-insensitive VLSI circuit. The circuit is derived
from the program by applying a series of systematic, semantics-preserving

Figure 23. Implementation of P2.
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transformations that we have compared to compiling. Hence, the circuits are
correct by construction, and their logical correctness is independent of the
delays in operators and wires, with the exception of isochronic forks.

The examples cover most of the constructs of the language but not all
of them: We have not shown how to implement an arbitrary set of guards.
Therefore, we have not quite shown that any program in the language can be
compiled. Such a proof has been given in [1] and [2], where the compilation
of each construct is described as part of the basic algorithm for an automatic
compiler. It is shown that any program in a subset of the language can be
implemented as a delay-insensitive circuit using only a small set of basic
elements: the two-input C-element, the two-input or-gate or tweo-input and-
gate, the synchronizer, the inverter, and the isochronic fork.

There is no reason, however, for confining the designer to a minimal set
of operators. On the contrary, since an advantage of VLSI is the possibility
to create operators at no cost, introducing the special-purpose operator that
exactly implements an arbitrary set of production rules often simplifies a
circuit drastically.

In order to convince the VLSI community of the practicality of our method,
it was essential to fabricate the circuits we had designed. Hence, all significant

Figure 24. Implementation of the fair arbiter.
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examples that we have used in our research —distributed mutual exclusion,
queues, stacks, routing automata for a communication network, the 3X + 1
engine— have been fabricated in SCMOS using the MOSIS foundry service.
They have all be found to be correct on “first silicon”. They are also very
robust and —given the low level of circuit optimization applied— surpris-
ingly fast. The 3x + 1 engine, constructed by Tony Lee, is a special-purpose
processor consisting of a state-machine and an 80-bit-wide datapath. It con-
tains approximately 40,000 transistors and operates at over 8 MIPS {million
instructions per second) in 2¢m MOSIS SCMOS technology.

At the moment of writing, we have just completed the design of the first
asynchronous general-purpose microprocessor [12]. It is a 16-bit RISC-like
architecture with independent instruction and data memories. It has 16 reg-
isters, four buses, an ALU, and two adders. The size is about 20,000 transis-
tors. Two versions have been fabricated: one in 2uym MOSIS SCMOS, and one
in 1.6um MOSIS SCMOS. (On the 2pm version, only 12 registers were imple-
mented in order to fit the chip on an 84-pin 6600um x 4600um package.)

The chips are entirely delay-insensitive, with the sole exception of the in-
terface with the memories and, of course, the isochronic forks. In the absence
of available memories with asynchronous interfaces, we have simulated the
completion signal from the memories with an external —off-chip— delay. For
testing purposes, the delay on the instruction memory interface is variable.

In spite of the presence of floating n-wells, the 2um versionrunsat 12 MIPS.
The 1.6um version runs at 18 MIPS. (Those performance figures are based on
measurements from sequences of ALU instructions without carry. They take
no advantage of the overlap between ALU and memory instructions.) Those
performances are quite encouraging given that the design is very conserva-
tive: no pass-transistors, static gates, dual-rail encoding of data, completion
trees, etc.

Only 2 of the 12 2um chips passed all tests, but 34 of the 50 1.6ym chips
were found to be entirely functional.

We have tested the chips under a wide range of VDD voltage values. At
room temperature, the 2um version is functional in a voltage range from 7V
down to 1V! It reaches 15 MIPS at 7V. We have also tested the chips cooled in
liquid nitrogen. The 2um version reaches 20 MIPS at 5V and 30 MIPS at 12V.
The 1.6um version reaches 30 MIPS at 5V. Of course, these measurements are
made without adjusting any clocks (there are none), but simply by connecting
the processor to a memory containing a test program and observing the rate
of instruction execution. The power consumption is 145mW at 5V, and 6.7mW
at 2V.
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